
When Push Comes to Ads:
Measuring the Rise of (Malicious) Push Advertising

Karthika Subramani
University of Georgia

karthika.subramani25@uga.edu

Xingzi Yuan
University of Georgia
x.yuan@uga.edu

Omid Setayeshfar
University of Georgia
omid.s@uga.edu

Phani Vadrevu
University of New Orleans

phani@cs.uno.edu

Kyu Hyung Lee
University of Georgia
kyuhlee@uga.edu

Roberto Perdisci
University of Georgia

Georgia Institute of Technology
perdisci@uga.edu

ABSTRACT
The rapid growth of online advertising has fueled the growth of ad-
blocking software, such as new ad-blocking and privacy-oriented
browsers or browser extensions. In response, both ad publishers
and ad networks are constantly trying to pursue new strategies to
keep up their revenues. To this end, ad networks have started to
leverage theWebPush technology enabled bymodern web browsers.
As web push notifications (WPNs) are relatively new, their role in
ad delivery has not yet been studied in depth. Furthermore, it is
unclear to what extent WPN ads are being abused for malvertis-
ing (i.e., to deliver malicious ads). In this paper, we aim to fill this
gap. Specifically, we propose a system called PushAdMiner that
is dedicated to (1) automatically registering for and collecting a
large number of web-based push notifications from publisher web-
sites, (2) finding WPN-based ads among these notifications, and (3)
discovering malicious WPN-based ad campaigns.

Using PushAdMiner, we collected and analyzed 21,541 WPN
messages by visiting thousands of different websites. Among these,
our system identified 572 WPN ad campaigns, for a total of 5,143
WPN-based ads that were pushed by a variety of ad networks.
Furthermore, we found that 51% of all WPN ads we collected are
malicious, and that traditional ad-blockers and URL filters were
mostly unable to block them, thus leaving a significant abuse vector
unchecked.

CCS CONCEPTS
• Informationsystems→Onlineadvertising;Webmining; Spam
detection; • Security andprivacy→ Social engineering attacks.
ACMReference Format:
Karthika Subramani, Xingzi Yuan, Omid Setayeshfar, Phani Vadrevu, Kyu
HyungLee, andRoberto Perdisci. 2020. WhenPushComes toAds:Measuring
the Rise of (Malicious) Push Advertising . In ACM Internet Measurement Con-
ference (IMC ’20), October 27–29, 2020, Virtual Event, USA.ACM, Pittsburgh,
PA , USA, 14 pages. https://doi.org/10.1145/3419394.3423631

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IMC ’20, October 27–29, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8138-3/20/10. . . $15.00
https://doi.org/10.1145/3419394.3423631

1 INTRODUCTION
In the past few years, the rapid growth of online advertising has
fueled the growth of ad-blocking software, such as new ad-blocking
and privacy-oriented browsers (e.g., Brave [4]) or browser exten-
sions (e.g., AdBlockPlus [1]). In response, both ad publishers and ad
networks are constantly trying to pursue new strategies to keep up
their revenues. To this end, ad networks have started to leverage
the Web Push technology enabled by modern web browsers [45].
Until relatively recently, push notifications were mostly limited to
native apps on mobile platforms, and web-based applications were
unable to connect to their users out of active browsing sessions.
However, now Web Push allows for web applications to send out
Web Push Notifications (WPN) at any time to re-engage their users,
even when the browser tab in which the web application was run-
ning is closed (the browser itself needs to be running, but does not
need to be in the foreground for a WPN to be delivered to the user).
Furthermore, unlike push notifications from native mobile apps,
WPNs allow for notifications to be displayed on both desktop and
mobile devices. Thus, they serve as a single tool with support to
reach users on multiple platforms.

Although WPNs were initially designed for websites to deliver
simple messages (e.g., news, weather alerts, etc.), they have become
an effective way to also serve online ads, and can therefore be
abused to also deliver malicious ads. In particular, the use of WPNs
for ad delivery has some unique advantages. First, unlike traditional
online ads (banner ads, pop-up ads or pop-under ads), advertisers
do not have to wait for users to reach the web page that publishes
the ad. Instead, advertisers can send out notifications that can allure
users to their targeted content. Secondly, thanks to years of experi-
ence with native mobile app notifications, users have been trained
to compulsively interact with push notification messages (at least
on mobile devices). WPN-based ads may also be less prone to ad
blindness [60], compared to traditional web ad delivery mechanisms
such as page banners. Furthermore, ad-blocking software are not
currently effective at blocking WPN-based ads (see Section 6.4), in
part because browser extensions are not allowed to interfere with
the Service Workers code through which WPNs are delivered [48].
For these reasons, some ad networks are focusing their business
specifically around WPN ads (e.g., RichPush [17]).

As WPNs are relatively new, their role in ad delivery has not
yet been studied in depth. Furthermore, it is unclear to what ex-
tent WPN ads are being abused for malvertising (i.e., to deliver

724

https://doi.org/10.1145/3419394.3423631
https://doi.org/10.1145/3419394.3423631

IMC ’20, October 27–29, 2020, Virtual Event, USA K. Subramani, X. Yuan, O. Setayeshfar, P. Vadrevu, K. Lee and R. Perdisci

malicious ads). In this paper, we aim to fill this gap. Specifically,
we propose a system called PushAdMiner that is dedicated to (1)
automatically registering for and collecting a large number of web-
based push notifications from publisher websites, (2) finding WPN-
based ads among these notifications, and (3) discovering malicious
WPN-based ad campaigns. To build PushAdMiner, we significantly
extend the Chromium browser instrumentations developed by [39]
and [58], which have been open-sourced by the respective authors.
Specifically, neither [39] nor [58] are able to track the activities of
Service Workers in detail. Therefore, we implement our own set
of browser instrumentations that allows us to track WPNs in all
their aspects, from registration to notification delivery, on both
desktop and mobile devices. We then build a custom WPN crawler
around our instrumented browser to automatically receive, track,
and interact with generic WPNs, including collecting malicious
WPN ads and their respective malicious landing pages. Finally, we
develop a data mining pipeline to analyze the collected WPNs and
discover malicious WPN-based campaigns.

To the best of our knowledge, ours is the first systematic study
that focuses on automatically collecting and analyzing WPN-based
ads and on discovering malicious ad campaigns delivered via WPNs.
In contrast, previous work focused on other security-related as-
pects of Service Workers and Push Notifications, such as building
stealthy botnets [48], or social engineering attacks that attempt to
force users into subscribing to push notifications [58], but with-
out studying the resulting push messages. Lee at al. [38] study
Progressive Web Apps. They collect Service Worker scripts from
top-ranked website homepages and analyze their push notifications.
Their work studies potential security vulnerabilities related to Ser-
vice Workers, App Cache, and discusses how push notifications
may be abused to launch phishing attacks, without measuring how
prevalent these attacks are in the wild. Our work is different, in
that we aim to automatically collect and analyze WPN-based ads,
to discover WPN ad campaigns, and to measure the prevalence of
malicious WPN-based ad campaigns in the wild.

In summary, we make the following contributions:
• We present PushAdMiner, a system that enables the auto-
mated collection and analysis of online ads delivered via
web push notifications (WPNs) on both desktop and mobile
devices.

• To track WPNs, we extend a Chromium-based instrumented
browser developed in [39, 58] to allow for a detailed analysis
of Service Workers, which are at the basis of WPN deliveries.
Furthermore, we build a custom WPN crawler around our
instrumented browser to collect and automatically interact
with WPNs.

• Using PushAdMiner, we collected and analyzed 21,541WPN
messages by visiting thousands of different websites. Among
these, our system identified 572 WPN ad campaigns, for a
total of 5,143 WPN-based ads that were pushed by a vari-
ety of ad networks. Furthermore, we found that 51% of all
WPN ads we collected are malicious, and that traditional ad-
blockers and URL filters were mostly unable to block them,
thus leaving a significant abuse vector unchecked.

2 MOTIVATING
EXAMPLEANDBACKGROUND

In this section, we provide an example of WPN-based malicious ad,
and then briefly explain the concepts and technologies behind web
notification services.

2.1 Motivating Example
Figure 1 provides an example of malicious WPN-based ad. Dur-
ing the preliminary stages of our research, we stumbled upon a
website on aurolog[.]ru. When visiting the main page, the site re-
quested permission to send us notifications. We granted permission
by pressing the Allow button on the browser dialog box, and subse-
quently received a WPN ad with the following alert message: “Your
payment info has been leaked” (see Figure 1). After clicking on the
notification, we were redirected to a tech support scam [46]. To our
surprise, the landing URL was neither blocklisted by Google Safe
Browsing[11] nor detected as malicious by any of the web page
scanners on Virus Total[21]. This example confirmed our suspicion
that WPNs may be abused for malvertising, and sparked our inves-
tigation to determine whether such cases of malicious WPN-based
ads could be automatically collected and analyzed.

2.2 Technical Background
Recent changes in HTML5 have introduced new web features, such
as Service Workers[20], Push Notifications[14] and AppCache[19].
Websites that adopt these technologies are called Progressive Web
Apps (PWAs). Throughout this paper, we refer to push notifications
sent by PWAs using a browser as Web Push Notifications (WPN),
to distinguish them from push notifications sent by native apps on
mobile devices, and refer to Service Workers as SWs for brevity.
ServiceWorkers andPushNotifications: A ServiceWorker (SW)
is an event-driven script executed by the browser in the background,
separately from the main browser thread and independently of the
web application fromwhich it was initially registered and that it con-
trols. In practice, a SW comes in the form of a JavaScript file that is
registered against the origin and path of the web page to which it is
associated (only HTTPS origins are allowed to register a SW). In ef-
fect, SW can be viewed as “a programmable network proxy that lets
you control how network requests from your page are handled”[13].

Service Worker can use the Push API[16] to receive messages
from a server, even while the associated web application is not
running. It is worth noting that a single web app is allowed to reg-
ister multiple SWs. Service Workers can also use the Notifications
API[14] to display system notifications to the user. A prerequisite
is that the web application must first request permission to dis-
play notifications to the user (only allowed for HTTPS origins).
If the user accepts (i.e., clicks on “Allow” instead of “Block” on
the notification request popup) to receive notifications from the
web application’s origin, this permission persists across browser
restarts, and until the user explicitly revokes the permission via
browser settings/preferences (notice that non-expert users may
find it difficult to understand, find, and disable notifications in the
browser’s settings).

Web notificationmessages have a number of customizable param-
eters, such as title, body, target URL, icon image, display image and
action buttons. The user can interact with a notification by either

725

aurolog[.]ru

When Push Comes to Ads:
Measuring the Rise of (Malicious) Push Advertising IMC ’20, October 27–29, 2020, Virtual Event, USA

1) Visits
https://aurolog.ru

2) Allows
Notification

3) Continues browsing
other websites

4) Gets Notification from
aurolog.ru

5) Clicks the Notification 6) Redirected to tech scam page

Figure 1: Example ofmalicious advertisement served throughweb push notifications

clicking on it, closing it or performing any custom actions displayed
in the notification message. SW can listen to such user events and
take action according to the input. This includes loading target URL
on a separate tab, following a user’s click on the notification box.
Firebase CloudMessaging (FCM): FCM is a cross-platform mes-
saging solution for Push Notifications. It can serve as a central
authority that mediates the communication between the ad server
and the Service Worker. Upon initial registration, FCM creates a
unique registration ID per user and per Service Worker, which is
sent along with an endpoint URL [12] to the ad server. For further
details, refer to FCM’s online documentation [33].

3 SYSTEMOVERVIEW
In this section, we provide an overview of how PushAdMiner
works, leaving a detailed description of the main system’s com-
ponents to Sections 4 and 5. A high-level representation of the
system is provided in Figure 2.

PushAdMiner consists of three main components: (i) an instru-
mented browser to collect fine-grained information about SWs and
WPNs; (ii) a custom crawler that automatically visits sites and inter-
acts with the browser, including granting notification permissions
and interacting with WPNs (Section 4); and (iii) a data analysis
component aimed at identifying WPN-based ad campaigns and
labeling likely malicious ones (Section 5).

While a number of browser automation and crawling systems
have been proposed, including Selenium [53], Puppeteer [32], and
others [36, 39, 58], currently they do not fully support the automatic
user interactions with WPNs and collection of all details about SWs
needed for our study. We therefore built an instrumented browser
based on Google Chromium, by significantly extending existing
open-source Chromium instrumentations [39, 58]. In addition, we
leveraged Puppeteer [32] for browser automation and event logging,
and wrote custom scripts to record SW registrations and network re-
quests. Figure 2 presents an overview of howPushAdMiner collects
information about WPNs, and how the browser logs are analyzed
to identify ad campaigns in general and discover malicious ones
among them. First, we discover a set of URLs that may send push
notifications with the help of an ad network and filter those that
actually request for notification permission (see Section 6.1 for
details). For the web pages that ask for notification permissions,
we log details about the responsible SW code, automatically grant

permission (via browser code instrumentation), and then collect
the notifications that are later pushed to our instrumented browser.
When a notification is displayed by the browser, we record fine
grained details about the notification message itself (including mes-
sage text and icons), automatically simulate a user click on the
notification box (via browser code instrumentation), and track all
events resulting from the click. If the click results in a new page be-
ing open, we record detailed information about the related network
requests, including all browser redirections, as well as detailed logs
and a screenshot of each new page the browser visits, including
the landing page (i.e., the final web page reached due to the click).

Finally, we extract relevant information from the detailed logs
of our instrumented browser, and apply a clustering strategy to
find notifications that are similar to each other, which allows us to
identifyWPN-based ad campaigns. We then leverage URL blocklists
to find WPN ad campaigns that are likely malicious (e.g., because
one or more landing pages are known to be malicious).

Note that in this paper we do not focus on building a malicious
WPN ad campaign detector, such as using statistical features or
machine learning classifiers. Rather, our focus is on discovering,
collecting, and analyzing WPN ad campaigns in general, and on
measuring the prevalence of both benign and malicious campaigns.
As we will show in Section 6, URL blocklists tend to miss a signif-
icant number of malicious URLs that we determine to be related
to malicious ad campaigns. The analysis we present in this paper
could therefore be used as a starting point for developing an auto-
mated malicious WPN ad campaign detector. We leave this latter
task to future work. Our code to collect and analyze WPNs is pub-
licly available in a Github repo1 and a Docker container with the
instrumented Chromium is in Docker Hub 2.

Ethical Considerations: To track WPN-based ads and label
malicious ones, it is necessary to collect information about the land-
ing page that an ad eventually redirects to. For instance, for most
malicious ads the attack is effectively realized only once the user
reaches the landing page, especially in case of social engineering
and phishing attacks. As we do not know in advance what landing
page will be reached by clicking on a WPN message, and whether
a WPN ad is malicious or not, our system will likely click on both

1https://github.com/karthikaS03/PushAdMiner
2https://hub.docker.com/repository/docker/dockerammu/docker_puppeteer_
chromium_xvfb

726

https://github.com/karthikaS03/PushAdMiner
https://hub.docker.com/repository/docker/dockerammu/docker_puppeteer_chromium_xvfb
https://hub.docker.com/repository/docker/dockerammu/docker_puppeteer_chromium_xvfb

IMC ’20, October 27–29, 2020, Virtual Event, USA K. Subramani, X. Yuan, O. Setayeshfar, P. Vadrevu, K. Lee and R. Perdisci

Progressive
Web

Applications

WPN
Crawlers

 Logs &
Screenshots

WPN
Metadata

context

target
URL

title

body

site
domain

path

WHOIS
name

IP
image

rank

Data Collection Module

WPN
Clustering

Unlabeled
Clusters

WPN Ad
Campaigns

Meta Clustering

Meta
Clusters

Malicious
WPNs

Malicious
WPN Ad

Campaigns

Suspicious
WPNs

Suspicious
WPN Ads

URL
Blocklisting

Manual
Blocklist

Data Analysis Module

Figure 2: PushAdMiner SystemOverview

legitimate and malicious ads. In turn, this may cause legitimate
advertisers to incur a small cost for our clicks, as they will likely
have to pay a third-party publishing web page and ad network for
their services (notice that we obviously receive no monetary gain
whatsoever during this process). This is common to other simi-
lar studies, such as [49, 58], and we therefore address the ethical
considerations for our study following previous work.

To make sure we do not have a significant negative impact on
legitimate third-parties, we estimated the cost incurred by these
advertisers due to ad clicks performed by our system, and found
that our system has negligible impact on advertisers. Specifically,
among the WPN ads we identified, we consider legitimate ads to
be those whose landing pages are not labeled as malicious by Virus
Total’s URL classification services. Then, we estimate the cost per
landing domain based on the number of ads we clicked on that lead
to a specific domain, using the Cost Per Mille (CPM) [5] for push
notification ads according to iZooto [18]. The maximum cost per
landing domain throughout our entire study was USD 1.12 (due to
landing on the same domain 444 times), which we calculated using
the standard CPM of USD 2.54. On average, we visited each landing
domain 18 times, which corresponds to an average cost of USD
0.04 per landing domain (i.e., per advertiser). Considering these low
values, we believe the impact of our system on advertisers is not
significant, and is on par with previous work [49, 58].

4 DATACOLLECTIONMODULE
In this section, we describe in detail how PushAdMiner’s data col-
lection module is implemented. The steps referred to in the follow-
ing sections follow the numbering given in Figure 3.

4.1 Desktop Environment
To discover WPN ad campaigns, we first need to collect WPN mes-
sages. To this end, we build a crawler consisting of an instrumented
browser and browser automation scripts. As our crawler encoun-
ters a website that asks for permission to send push notifications,
our goal is to automatically allow the permission request, so that
we can collect notifications from that origin. To this end, we in-
strumented our browser as follows: we introduce changes to the
RequestPermission and PermissionDecided methods under the
PermissionContextBase class in Chromium’s C++ code base, to

log all details about the permission request (e.g., the origin request-
ing it) and to automatically grant permissions.
ServiceWorker Registration (step 2): To record when a SW is
registered by a web page, we use a custom script for Puppeteer [32].
Specifically, we listen to serviceworkercreated events and log
information such as details about the page that registered the SW,
and the URL from which the SW code was retrieved.
Network Requests (step 3): When the browser receives a push
message from the FCM service, it will alert the SW to which the
message is destined. The correct SW is identified via a unique ID
included in the push message. As part of handling the push message
and related notification, the SW may issue one or more network re-
quests directly to an ad network server or other third-party servers.
For instance, the SW may contact an ad network server to deter-
mine the landing URL associated to a given push message. Also,
after a pushed notification receives a user click, the SW may send
a network request to an ad server to notify it of the user click, or
to facilitate other tracking related activities. We capture and log
such network requests issued by SWs by leveraging a custom Pup-
peteer [32] script that listens to SW request and response events.
Specifically, for every SW’s network request we record information
such as the requested URL, the data sent/received, possible network
redirections, and the related response content.
Notifications (steps 5-6): Notifications are displayed by invoking
showNotification under ServiceWorkerRegistrationNotifi-
cations (in Chromium’s C++ code). We therefore add an instru-
mentation hook to record calls to that method. Specifically, we log
the URL of the SW that called for showing the notification, the
notification title, body, icon URL, and target URL (if present).
Notification Clicks and Navigations (steps 7-8): Depending on
the type of notification, clicking on it can navigate the browser
to a new web page (e.g., on a separate tab). For WPN-based ads,
clicking on the notification box typically takes the user to the page
advertised in the WPN ad (i.e., the ad’s landing page). Collecting
such pages is especially important for studying malicious WPN ads,
because the landing page often implements a critical component
of the attack.

For instance, Figure 1 shows that the user reaches the actual tech
support scam page after clicking on the notification. The landing

727

When Push Comes to Ads:
Measuring the Rise of (Malicious) Push Advertising IMC ’20, October 27–29, 2020, Virtual Event, USA

page advertises the scam phone number, without which the attack
could not be monetized.

Service Worker

Visits &
Allows

Notifications
Registers

Web Server

Third-Party
Server

Requests

Cloud Messaging
Service

Send
Ad

details

Send Push
message

Display
Notification

Clicks
Notification

Opens
Landing

Page

1
2 3

45

67

8

Figure 3: Steps involved in Serving Ads viaWPNs

To automate the process of collecting the landing page asso-
ciated to push notification messages, we need to simulate a user
click. Unfortunately, browser automation frameworks such as Pup-
peteer [32] and Selenium [53] do not allow for interacting with
WPNs. Therefore, we again had to build our own custom browser
instrumentation. Specifically, we found that Chromium uses the
Add method in MessageCenterNotificationManager (in the C++
code base) to trigger the display of a notification. Also, we found
that WebNotificationDelegate has a method called Click that is
responsible for propagating user clicks to the notification. Therefore,
to simulate a user click we instrument the Add method mentioned
above so that, after the notification is displayed, it waits for a short
delay (e.g., a few seconds) and then calls WebNotificationDele-
gate::Click. If the Click call results in a web page navigation,
our browser records all network requests involved in the process
(including all redirections) and fine-grained details about the render-
ing of the landing page, which includes detailed information about
any JavaScript code executed in the context of the landing page.

4.2 Mobile Environment
We also developed a version of PushAdMiner for Android. Due to
some technical differences between how WPNs are displayed on
a mobile OS, compared to desktop environments, we had to adapt
some of the system components to run specifically on Android. First,
at the time when we started building our system, Puppeteer [32]
did not appear to support Android Chromium automation. Only
recently there have been online posts in which Puppeteer users
describe how they have been able to “hack” their configurations to
remotely control an Android browser. We therefore built our own
browser automation framework that works via the Android De-
bug Bridge (ADB). The capabilities of our ADB-based automation
framework are limited, but sufficient for enabling data collection
for PushAdMiner. We plan to explore the use of Puppeteer for
PushAdMiner on Android as future work.
LoggingInternalBrowserEvents: We compile our instrumented
Chromium browser for Android, so that we can collect intimate
details about internal browser events related to WPNs, including
recording information about the related Service Workers and the

rendering of the landing page resulting from clicking on a WPN.
Browser logs are sent via the logcat ADB command to a remote
logging machine.
Interacting with Notifications: Unlike on desktop devices, in
which WPN messages are displayed by the browser, on Android
device it is the Android OS that displays a WPN as a system noti-
fication. Also, unlike on desktop environments, the browser does
not need to be activated for a WPN message to be received, though
the browser may be activated after tapping on a notification (e.g.,
to navigate to the URL pointed to by the notification). We therefore
had to implement a different mechanism to simulate user interac-
tions withWPNs on Android. Specifically, we developed an Android
application that leverages Android’s Accessibility Service. The Ac-
cessibility Service is aimed to help people with disabilities in using
the device and apps. It is a long-running privileged system service
that helps users process information from the screen and lets them
interact with the content meaningfully in an easy way. Android
developers can leverage the Accessibility Service API and develop
apps that are made aware of certain events, such as TYPE_VIEW_-
FOCUSED and TYPE_NOTIFICATION_STATE_CHANGED. Furthermore,
the accessibility service API can also be used to initiate user actions
such as click, touch and swipe.

We install our app with Accessibility Service permission on an
Android physical device, and use it to interact with every notifica-
tion event fired. Whenever a new notification pops up, our appli-
cation will automatically swipe down the notification bar and click
on the notification to complete the action, while our instrumented
Android browser produces detailed logs about the consequences
of such interactions (e.g., loading a new web page).

As an alternative, AndroidDebugBridge (ADB) could be lever-
aged to implement the same browser automation that we imple-
mented using Accessibility Service. However, in practice, we found
that it could create large traffic overhead through the USB cable
connected with the device. As we already use ADB to retrieve fine-
grained browsing logs, we decided to avoid further USB overhead.
Therefore, we found the use of the accessibility features to be better
in practice for our specific application.

5 DATAANALYSISMODULE
In this section, we first describe in detail how we mine the collected
WPN messages to identify WPN-based ad campaigns, and later
explain how we label malicious campaigns.

5.1 WPN-based Ad Campaigns
To identify WPN-based ad campaigns, we mine the dataset of WPN
messages collected by PushAdMiner from a large and diverse set
of websites. To distinguish between generic WPN messages and
WPN-based ads, we start by considering the following intuitions.
Roughly speaking, advertisers tend to promote their products or
services on multiple websites, and clicking on a WPN notification
typically leads to a third-party landing page, on a different origin
than the website from which the WPN message was received. On
the other hand, non-adWPNmessages are typically related to alerts
(e.g., breaking news, weather alerts, etc.) that are specific to the
notifying website itself, and clicking on the notification often leads
to the same origin to which the notification was related.

728

IMC ’20, October 27–29, 2020, Virtual Event, USA K. Subramani, X. Yuan, O. Setayeshfar, P. Vadrevu, K. Lee and R. Perdisci

Following the above intuitions, we broadly define aWPNad cam-
paign as a set ofWPNmessages frommultiple sources that deliver simi-
lar content promoting the same (or similar) products or services. In prac-
tice, this translates into a (potentially large) group of similar WPN
messages pushed bymultiple differentwebsites that lead to the same
landing page, or different landing pages that show similar content.

To find such WPN ad campaigns among a large collection of
generic WPN messages, we leverage a document clustering ap-
proach. This clustering process aims to group together WPN mes-
sages that are similar to each other in terms of message content
and landing page. As a result, WPN ads that belong to a large WPN
ad campaign will tend to form larger clusters. On the other hand,
non-ad WPNs would tend to be isolated into singleton clusters or
clusters that contain messages related to only one source website
and a landing domain that points back to the source website itself.

Because clustering is an unsupervised learning process, it is
usually challenging to tune the hyperparameters to obtain perfect
clustering results. Therefore, to minimize the chances of grouping
together ads and non-ads, we tune our clustering system to be
conservative and yield “tight” clusters. Namely, WPN messages
assigned to the same cluster will exhibit high similarity. Although
this may result in someWPN ads being left out of the campaign (i.e.,
the cluster) they may also belong to, we will see later that we can re-
connect them to their respective campaigns using a meta-clustering
step (Section 5.3).

5.1.1 WPN Clustering Features and Approach. To cluster similar
WPNs, we first need to define the features to be compared and a
similarity function that calculates the closeness of two WPN mes-
sages. Thanks to our instrumented browser, each WPN we collect
is accompanied by metadata such as the notification title, message
body, the images and icons found in the WPN, the URL of the land-
ing page, a screenshot of the landing page reached after clicking
on the WPN (in the case of our desktop browser), the events that
occur immediately after a notification click, etc.

Among the above features, to discover WPN ad campaigns we
use the following ones for clustering: message title, message body,
and the URL path (i.e., we exclude the domain name) of the mes-
sage’s landing page URL. We then use these features to calculate
the pairwise distance between WPN messages. Specifically, given
two messages, we compute the distance between their title and
body text, and separately the distance between their landing URL
paths. Then, we compute the total distance between two WPNs as
the average of these two distances. We explain the distance mea-
sures in more detail below. The remaining information contained
in the WPN metadata collected by our browser (e.g., domain names,
screenshots, etc.) that are not used as features will instead be used
later to help us validate the clustering results.
WPNMessagesDistance: The text contained in the title and body
of a WPN message is typically short and includes specific keywords
that reflect the theme of the message. To measure the similarity be-
tween these short pieces of text (the concatenation of title and body),
we require a measure that gives importance to significant keywords
found in the content ofWPNs. To this end, we use the soft cosine sim-
ilarity [54] measure, which considers the semantic relationship be-
tween words. To compute the similarity between words, we first use

Word2Vec [8] on all WPN messages to obtain a term-similarity ma-
trix. We then convert eachWPNmessage into a bag-of-words repre-
sentation, and input both the term-similarity matrix and the bag-of-
word vectors for each pair of WPN messages into the cosine simi-
larity function (we use softcossim() implemented in gensim[31])
to obtain a pairwise similarity matrix for WPN messages. Since the
similarity value s ∈ [0,1], we calculate the distance as d= (1−s).
URL Paths Distance: Given the landing page URL of a WPN
(which we collect along with other metadata, as explained earlier),
we extract the URL path by excluding the domain name and the
query string values, while retaining the relative path to the page and
query string parameter names. To calculate the distance between
two URL paths, we use the Jaccard distance between tokens ex-
tracted from the URL path, such as the components of the directory
path, the page name, and the name of the query string parameters.
WPNClustering: Once the pairwise distances are computed, we
use agglomerative hierarchical clustering over the distance ma-
trix to formWPN clusters. To determine where to cut the resulting
dendogram, we compute the average silhouette score [52] for clus-
tering results obtained at different cuts, and choose the cut with
the highest score.
WPNAdCampaigns:As per our definition of WPN ad campaigns,
to determine if a WPN cluster is formed by ads, we take into con-
sideration the source of the WPNs. Namely, we count the number
of effective second-level domain names associated with the web-
sites that sent the push notifications per each cluster. This number
tells us if the WPNs have been published on multiple sources. If a
cluster contains more than one distinct second-level source website
domain, we label the cluster as aWPN ad campaign.

5.2 IdentifyingMaliciousWPNClusters
To determine the maliciousness of a WPN cluster, we leverage
two well-known URL blocklisting services: Google Safe Browsing
(GSB)[11] and Virus Total[21] (VT). We submit the full URLs of all
the landing pages reached from all WPN messages in the cluster to
these services. Then, we label a particular WPN message as known
malicious if the landing page URL is blocklisted as malicious by any
of the blocklisting services. Next, we use a simple label propagation
policy to flag as malicious the WPN clusters that contain at least
one known malicious WPN.

It is worth noting that we submit full URLs to GSB and VT. If
a full URL, u, is blocklisted, it does not necessarily mean that all
URLs under the same domain name as u will also be blocklisted
(in fact, we found some cases that confirm this observation for
VT). In addition, similar malicious WPN messages often lead to
different domain names, mainly as an attempt to evade blocking
by URL blocklists. At the same time, because WPN messages in the
same cluster are very similar, thanks to our conservative clustering
approach, they share very similar title, body, and structure of the
landing page URL path. Intuitively, if one WPN message is known
to lead to a malicious landing page, it is highly likely that all other
WPN messages in the same cluster also lead to similar malicious
pages, as we will also discuss in our measurement results (see Sec-
tion 6). That is why we rely on the simple “guilty by association”
policy mentioned above for label propagation.

729

When Push Comes to Ads:
Measuring the Rise of (Malicious) Push Advertising IMC ’20, October 27–29, 2020, Virtual Event, USA

5.3 WPNMeta Clustering
Because URL blocklists have limited coverage, it is possible that
some malicious WPN clusters will not be immediately identified
using the labeling approach discussed above. Furthermore, because
our clustering approach is conservative, it is possible that separate
clusters of WPN messages may in fact be related to each other. To
compensate for this, we perform a meta-clustering step that aims
to group together WPN clusters that may belong to the same WPN
“operation” (e.g., the same advertiser), as explained below.

To this end, we generate a bipartite graph G= (W ,D,E).W is a set
of nodes in which each node represents a WPN cluster obtained as
described in Section 5.1.1. D is the set of all domains pointed to by
the WPN messages we collected (i.e., all domains related to any of
the landing page URLs found in the WPN messages), and E is a set
of edges in which each edge connects a nodew ∈W to a node d ∈D.
Specifically, we connect eachWPN cluster to the domains related to
the landing page URLs linked by the WPN messages in the cluster.
Then, we find all isolated components,G1,G2,...,Gm ∈G, and con-
sider each isolated component as a meta cluster of WPN messages.
Notice that this leads us to groups ofWPN clusters that are related to
each other because they collectively share common landing page do-
mains. Figure 5 visually shows two examples of such meta clusters.

5.4 Identifying SuspiciousWPNClusters
In this section, we provide a systematic way to identify “potentially
malicious” (also referred to as suspicious) WPN ads in addition to
the malicious WPN ads that were found in the previous section.
Further, this helps to drastically reduce the manual effort required
to analyze all WPNs.

First, we consider those WPNs as suspicious whose landing do-
main names are associated with full URLs that have been previously
labeled as malicious by GSB or VT. Let Gi ∈ G be a meta cluster
that includes one or more of such known malicious URLs. Then, we
label WPN clusters inGi (and thus all WPN messages in those clus-
ters) as suspicious, unless they were previously labeled as malicious
according to the process described in Section 5.2.

In addition, given a meta cluster Gi , if it contains at least one
WPN cluster w j ∈W that we previously identified as a WPN ad
campaign (see Section 5.1), we consider all WPN messages con-
tained in the WPN clusters within Gi as WPN ads. This is because
those WPN messages point to domain names related to WPN-based
advertising, since they are linked to one or more WPN ad clusters,
and thus are highly likely WPN-based ad messages themselves.

Apart from using their association with malicious URLs, to iden-
tify additional suspicious WPN ad campaigns that were not pre-
viously labeled based on the process described above and in Sec-
tion 5.2, we proceed as follows. We notice that ad networks such as
Google Ads and Bing Ads recommend advertisers not to promote
the same product, brand, or similar customer experience by redirect-
ing users to multiple destination websites. Violating this policy is
referred to as Abuse of Ad Network by Google Ads[9] and Duplicate
Ads by Bing Ads[3]. Besides the fact that these practices do not
conform to advertising policies, malicious advertisers often prefer
hosting similar malicious content on multiple domains to evade
detection and to continue the attack even if one of their domains
is blocklisted. We then identify such practices and label the related

meta-clusters that lead to multiple different landing domains as
suspicious, to trigger further (manual) analysis to confirm if they
are malicious. We provide detailed measurements on the identified
suspicious WPN ads in Section 6.3.3.
Manual Verification: To validate the malicious URLs detected by
URL blocklists, and to measure the number of suspicious WPN clus-
ters that are in fact malicious, wemanually analyze all malicious and
suspicious WPN clusters discovered by our data analysis module.
During manual analysis, we consider multiple factors to determine
if the WPNs are indeed malicious. Once we manually confirm that a
WPN cluster is malicious, we add it to a manual blocklist, which we
then use to inform the measurement results presented in Section 6.

Some of the factors considered during manual blocklisting are
as follows. We recognize a WPN message as malicious if it meets
a combination of the following conditions: (1) leads to a landing
page visually similar to a known malicious page (as determined
by GSB and VT); (2) contains the same WPN message as a known
malicious WPN message, but leads to a different product/site (i.e., a
different landing page); (3) includes message content that is highly
likely malicious or leads to a page with likely malicious content
such as rewards that clearly seem too good to be true, as is typical
of survey scams [37], false financial alerts, etc.; or (4) leads to a
landing page that shares several domain-related properties with
known malicious sites, such as IP address, registrant, similar do-
main name, etc. We further discuss our manual analysis process by
presenting some examples in Section 6.3.2.

6 MEASURINGWPNADS IN THEWILD
In this section, we report measurements on the usage of WPNs as
an ad delivery platform, and provide insights into the malicious
use of WPN ads.

6.1 Data Collection Setup
We first describe PushAdMiner’s setup for harvesting in-the-wild
WPNmessages for both desktop and mobile environments. Because
our internal browser instrumentations are implemented by extend-
ing the browser code provided by [58], our data collection process
leverages Chroumium’s code base version 64.0.3282.204, which we
built for both Linux and Android environments.

6.1.1 Seeding theWPNCrawler. Our main goal is to setup theWPN
data collection system to maximize our chances of collecting WPN-
based ads, so that we can measure their properties and discover
abuse. To this end, we rely on the publicwww.com code search en-
gine. Compared to simply crawling popular websites, this allowed
us to more efficiently discover a diverse set of URLs (both popular
and unpopular) that use push notifications. We first identify a seed
set of popular advertisement networks that support push notifica-
tion advertisements. Specifically, by manually performing online
searches and reading articles and forums dedicated to advertising
online, we manually discovered 15 popular ad networks that pro-
vide push advertisement services. We registered an account with 9
of these ad networks to obtain the JavaScript code that needs to be
embedded in an ad-publishing websites to include the ad networks’
SWs that will control their push notifications requests. We then
used the publicwww.com code search engine to find websites (i.e.,
URLs) that likely embed the identified ad network’s code. The code

730

publicwww.com
publicwww.com

IMC ’20, October 27–29, 2020, Virtual Event, USA K. Subramani, X. Yuan, O. Setayeshfar, P. Vadrevu, K. Lee and R. Perdisci

search engine (publicwww.com) itself provides a list of ad networks
to search keywords mappings [15], which we leveraged to obtain
URLs of websites that likely embedded ads from the remaining 6
seed ad networks of interest, without the need to register an ac-
count with those networks as well. The list of 15 seed ad networks
we discovered this way is shown in Table 1.

In addition to the search keywords related to the 15 ad networks
mentioned above, we further used generic keywords that poten-
tially indicate that a web page employs push notifications, such
as NotificationrequestPermission, pushmanagersubscribe, a
‘push’ parameter value for addEventListener, etc. Overall we ob-
tained a list of 19 code search keywords to be used for searches on
publicwww.com that are likely to lead to URLs that make use of
push notifications. These keywords allow us to explore a large set
of web pages that goes beyond websites where ads from the seed
ad networks are most likely hosted. Table 1 provides a count of the
HTTPS URLs found via publicwww.com for each ad network and
generic WPN-related keyword.

As a result of the above search, we were able to gather a total
of 87,622 HTTPS URLs that could potentially register service work-
ers and publish WPN ads (notice that SWs can only be registered
by HTTPS origins). These URLs were hosted on 82,566 distinct
second-level domain names. We use this set of URLs as seed for
PushAdMiner’s WPN message crawlers. Notice that there is no
guarantee that the sites we crawl will in fact lead us to registering
for and receiving WPN-based ads. Rather, only a subset of these
web pages will actually request notification permissions. Therefore,
we visited each URL and retained only those that actually make a re-
quest for a notification permission. Then, we used PushAdMiner to
automatically grant notification permission requests on those URLs.

As shown in the last column of Table 1, overall we identified 5,849
URLs hosted on 5,697 distinct second-level domains that issued a
notification permission request. Of these 5,697 domains, 2,040 (36%)
ranked within the Alexa.com top one million most popular web-
sites, and 1,383 of them actually sent us notifications during our
experiment period. Table 2 shows a detailed breakdown of how the
2,040 domains ranked among the Alexa.com most popular websites.
These results show that our process for collecting WPNs is not
limited to unpopular, “low-tier” websites. In addition, they show
that even highly ranked websites can pushWPN ads, some of which
resulted to be malicious.

6.1.2 Collecting WPNs in a Desktop Environment. To automatically
harvest WPN advertisements at a large scale, we leverage Docker
containers [29] to launch several parallel instances of our instru-
mented browser-based crawlers. During our experiments, we used
four different Ubuntu 16.04 Linux machines having between 8 to 32
CPU cores and 64 to 128 GB of memory each, running a total of 20
to 50 Docker sessions in parallel at a time. For each seed URL that
issues a notification permission request, we start the monitoring
phase described below.

Every time we visit a URL, we wait 5 minutes to make sure the
website has sufficient time to present our browserwith a notification
request. Once a permission request is received and automatically
granted by a browser instance, a SW is registered. If a SWwas regis-
tered, we keep the related Docker container alive for an additional
15 minutes, to allow the browser to receive the first (or more than

one) WPN message from the visited URL. To select this 15 minutes
threshold, we first performed pilot experiments with much longer
waiting times (up to 96 hours) for a large subset of URLs (1,425 URLs,
to be precise), and observed that 98% of them sent their first notifi-
cation within 15 minutes of when the permission was first granted.

Given a container, and therefore a browser instance that granted
notification permissions to a specific URL, after the first 15 min-
utes of its life we suspend the container to free up resources for
instantiating a new container that will visit a new URL. However,
we periodically resume suspended containers to see if they will
receive additional notifications, which are queued in the FCM and
sent to the browser as it comes back online.

Table 1: URLs and Notification Permission Request counts

AdNetwork URLs NPRs
Ad-Maven 49,769 1,168
PushCrew 15,177 427
OneSignal 11,317 2,933
PopAds 1,582 73
PushEngage 796 215
iZooto 676 278
PubMatic 647 7
PropellerAds 335 9
Criteo 154 5
AdsTerra 115 2
AirPush 52 0
HillTopAds 21 3
RichPush 12 0
AdCash 10 0
PushMonetization 9 5

Generic Keywords URLs NPRs
NotificationrequestPermission 3,965 538
pushmanagersubscribe 2,667 158
addEventListener(’Push’ 263 9
adsblockkpushcom 55 19
Total 87,622 5,849

Table 2: URL rankings on Alexa’s top 1M sites

Alexa
Ranking

Request
Notifications

Sent
Notifications

WPNAds
(# of Sites)

Malicious
WPNAds
(# of Sites)

< 5k 37 21 6 3
< 10k 93 46 8 5
< 50k 317 151 21 11
< 100k 515 230 33 14
< 500k 1494 610 90 33
< 1M 2040 1383 135 60

6.1.3 CollectingWPNs in Mobile Environment. During our study,
we found that WPN messages sent to mobile devices tended to be
somewhat different that the ones collected by desktop browsers,
in that they were more tailored to mobile users. In particular, ma-
licious mobile WPN messages included fake missed call notifica-
tions, fake amber alerts, “spoofed” Gmail or WhatsApp notifica-
tions, fake FedEx notifications, etc. In addition, we found that these
malicious messages were much more likely to appear on real An-
droid devices, rather than emulated environments (likely due to
some form of emulator detection). Therefore, to automatically col-
lect mobile WPN messages we instrumented a real mobile device.
Specifically, we used a Google Nexus 5 device with 2 GB of RAM
and a 1080×1920 pixels display. The Android version we used was
aosp_shamu-userdebug7.1.1N6F26Y.

Aswe attempted to scale ourPushAdMiner’s mobileWPN crawlers
on a real device, we identified two challenges. First, Docker or other

731

publicwww.com
publicwww.com
publicwww.com
Alexa.com
Alexa.com

When Push Comes to Ads:
Measuring the Rise of (Malicious) Push Advertising IMC ’20, October 27–29, 2020, Virtual Event, USA

container techniques do not support Android, and therefore we
cannot easily visit multiple URLs in parallel with isolated browsing
sessions. Second, we considered to use app cloning techniques [57]
to open multiple browser instances separately in isolated execution
environments. However, the limited computing power of mobile
device restricted us to scale up and visit a large number of URLs
simultaneously. Therefore, we decided to open multiple URLs in
one chromium app but in separate tabs.

Table 3: Measurement Results of Data analysis Module

WPNs
with

Landing
Pages

WPN
Ad

Campaigns

WPN
Ads

Malicious
WPNAd

Campaigns

Malicious
WPN
Ads

Desktop 9,570
572 5143 318 2615Mobile 2,692

Total 12,262

6.2 WPNMessages Dataset
We start with the 5,849 initial URLs that we collected as explained
in Section 6.1.1, over 5,697 distinct second-level domain names. By
clicking on WPN messages issued by these initial URLs, we col-
lect an additional 10,898 URLs across 2,269 distinct second-level
domains. When visited, many of these additional URLs presented
our browser with a notification request, which our crawler auto-
matically granted. This brought us to a total of 7,951 URLs that
registered a SW with Push permission and were therefore able to
push notifications to our instrumented browser instances over time.

During the course of about two months (September and October
2019), we were able to collect a total of 21,541 push notification mes-
sages, including 12,441 notifications for the desktop environment
and 9,100 for the mobile environment. PushAdMiner interacted
with each of these WPN messages. However, not all automated
clicks on notification boxes led to a separate landing page. In addi-
tion, some landing pages appeared to cause a crash in the browser’s
tab (but not the browser) in which they rendered, preventing us
from collecting detailed information on those pages (this was likely
due to the fact that our instrumented Chromium browser is not
based on the most recent stable code base). We filtered out these no-
tifications, leaving us with 12,262 WPN messages (9,570 on desktop
and 2,692 on mobile) that when clicked on lead to a valid landing
page. We then used this final set of WPN messages for clustering
process (refer Section 5).

6.3 Data Analysis Results
Summary of findings: Table 3 summarizes the overall results of
our analysis process. From the 12,262 WPN messages mentioned
above, PushAdMiner identified 572 WPN ad campaigns and a total
of 5,143 WPN ads related to these campaigns. Moreover, PushAd-
Miner identified 51% of all WPN ads as malicious. Specifically,
PushAdMiner found 318 (out of 572) campaigns to be malicious; in
aggregate, these malicious campaigns included 2,615 WPN ads.

This is quite a staggering result, in that it appears that ad net-
works that provideWPN ad services are heavily abused to distribute
malicious content. Later, in Section 6.4, we also show that ad block-
ers are ineffective at blocking such ads, which is an additional cause

of concern. In the following sections, we discuss the clustering and
labeling results in more detail.

6.3.1 WPN Clusters and Ad Campaigns. As discussed in section
5.1.1, we cluster the collected WPN messages based on their mes-
sage content and landing page information. After clustering 12,262
WPN messages that led to a valid landing page, we obtained 8,780
WPN clusters, of which 7,731 were singleton clusters containing
only one element (i.e., only one WPN message). Of the remaining
non-singleton clusters, 572 were labeled as WPN ad campaigns,
according to the process described in Section 5. In aggregate, these
WPN ad campaigns pushed 3,213WPN admessages to our browsers,
during a period of about two months.

Figure 4 provides some concrete examples of WPN clusters. In
both WPN-C1 and WPN-C2, the respective WPNs were pushed from
multiple sources (i.e., multiple second-level domain names), as also
shown in Figure 4. WPN-C3 included 4 identical WPN messages
pushed by a single source website, a bank, alerting users on their
loan offers. These messages appear to be legitimate, and led back
to the site that pushed them. WPN-C4 is an example of WPN mes-
sage isolated into a singleton cluster. According to the definition
provided in Section 5, we label WPN-C1 and WPN-C2 as WPN ad
campaigns, because the WPNs in each of the clusters deliver very
similar (or the same) message promoting very similar products from
multiple sources. However, WPN-C3 and WPN-C4 do not meet the
definition and are thus not labeled as WPN ad campaign.

6.3.2 MaliciousWPN Ad Campaigns. As described in Section 5.2,
we submit landing page URLs related to all WPN messages to
GSB [11] and VT [21]. On our initial scan, less than 1% of the
URLs were detected as malicious by GSB or VT, in aggregate. For
instance, initially VT flagged 108 landing page URLs as malicious,
of which 88 were related to WPN messages labeled by our system
as belonging to ad campaigns. Notice that for VT we consider a
URL as malicious if at least one of the URL detection engine reports
it as malicious, and later manually review all results to filter out
possible false positives. After one month, we submitted the same
set of URLs once again, and we found that 1,388 URLs (11.31%) were
detected by VT, though GSB still only flagged 1% of them.

Table 4: Measurement Results at Stages of Clustering

clusters # ad-related
clusters

#WPN
ads

known
malicious ads

additional
malicious ads

AfterWPN
Clustering 8780 572 3213 758 367

AfterMeta
Clustering 2046 224 1930 210 1280

Total: 5143 968 1647

PushAdMiner relies on label propagation to label WPN mes-
sages and clusters as malicious, based on results from VT and GSB,
as explained in Section 5.2. To limit the chances of amplifying pos-
sible false positives from VT and GSB, we manually verified all
1,388 URLs to check whether they actually led to malicious content.
We were able to confirm that 96.8% of them indeed appeared to be
malicious. Of the remaining 44 URLs that we could not confirm as
malicious, 13 were found to belong to popular benign domains such
as bing.com, kbb.com, tophatter.com, etc.; 24 URLs were related

732

bing.com
kbb.com
tophatter.com

IMC ’20, October 27–29, 2020, Virtual Event, USA K. Subramani, X. Yuan, O. Setayeshfar, P. Vadrevu, K. Lee and R. Perdisci

[Sample Landing Pages]

[Domains]
surveysandpromotionusa.com
surveysandpromotionusa.com

…
signup.ourdailysweepstakes.com

[URL Paths]
/Flow isPrepop reward subaff1
/Flow isPrepop reward subaff1

…
/Flow isPrepop reward subaff1

[Sample Notifications]

(a) WPN-C1: consists of 40 WPNs

[Sample Landing Pages]

[Domains]
awakenfeedback.com

benehai.com

…
nodilax.com

[URL Paths]
/spin/ caid trsid o tar isp language

amt cep Iptoken
/jackpot/ caid trsid o tar isp language

amt cep Iptoken
…

/lucky-number/ caid trsid o tar isp language
amt cep Iptoken

[Sample Notifications]

(b) WPN-C2: consists of 12 WPNs

[Landing Page]

[Domain]
www.hdfc.com

[URL Path]
/campaign/ web_notifications

utm_source utm_medium

[Notification]

(c) WPN-C3: consists of 4 identical WPNs

[Landing Page]

[Domain]
hobii.com

[URL Path]
/exciting-things/ c847frk-olsens-
efterarsrengoring utm_medium

utm_source

[Notification]

(d) WPN-C4: consists of 1 WPN

…

1 2

40

1
2

…

1 2 12

12

1

2

zip-foreclosures.com

1

2

zip-hudhomes.com

…

zip-hudhomes.com

40

40

www.hdfc.com

hobii.com

awakenfeedback.com

mueanca.com

1

2

12

…

nodilax.com

Figure 4: Examples ofWPN clusters

to unpopular blog/news sites; 3 led to adult websites; and 4 led
to websites hosting non-English content that we could not verify.
Given that these sites may be benign, since we do not have all the
information VT and GSB had to label them as malicious we take
a conservative stance and remove the malicious label from them.
Accordingly, we label 1,344WPNs as knownmalicious. Among them,
758 WPNs were part of 572 WPN clusters that we previously classi-
fied as ad campaigns (see Section 6.3.1). The remaining 586 WPN
messages that led to malicious landing pages were not immedi-
ately found to belong to WPN ad clusters, as they formed separate
small clusters. We will determine whether they are related to WPN
campaigns later, in Section 6.3.3) after the meta-clustering step
(explained in Section 5.3).

By using a “guilty by association” label propagation policy, as
explained in Section 5.2, we label WPN ad campaigns as malicious if
they include at least one knownmaliciousWPN (remember that this
policy is justified by the close similarity in content and landing page
URL path between messages in the same cluster). This yielded 152
(out of 572) maliciousWPN ad campaigns, which overall included
376 WPN (or more precisely their landing pages) that GSB or VT

missed to detect as malicious. After manually inspecting these 376
WPN ads, we were able to confirm that 367 of them are indeed
malicious ads that lead to survey scams, phishing pages, scareware,
fake alerts, social media scams, etc. We were not able to confirm the
maliciousness of the remaining 9 ads (i.e., 2.4%) that led to different
pages that welcome/thank the user for subscribing to the notifi-
cation all hosted on the same IP address. The take away from the
above discussion is that, using our WPN clustering approach, we
were able to increase the number of confirmed malicious WPN ads
from 758 to 1,125 (i.e., 758 plus 367), which represents an increase
of about 50% as summarized in Table 4, first row.

Referring to the examples provided in Figure 4, in cluster WPN-C1,
35 out of the 40 WPNs were labeled as known malicious WPNs, ac-
cording to VT. However, PushAdMiner labeled this entire cluster as
malicious. After manually inspecting all 40 messages, we confirmed
that the remaining 5 messages in the cluster were indeed related
to the 35 malicious sweepstakes/survey scam ads.

6.3.3 Finding Suspicious Ads. So far, we have leveraged the labels
provided by VT and GSB to identify malicious WPN ads, and label

733

When Push Comes to Ads:
Measuring the Rise of (Malicious) Push Advertising IMC ’20, October 27–29, 2020, Virtual Event, USA

WPN ad campaigns. Unfortunately, both URL blocklists suffer from
significant false negatives, when it comes to detecting malicious
landing pages reached fromWPN ads. As an example, consider clus-
ter WPN-C2, which PushAdMiner identifies as an ad campaign. This
cluster contains 12 WPNs; none of which were labeled as known
malicious according to VT. However, PushAdMiner flags this clus-
ter as suspicious since it contains duplicate ads (see definition in
Section 5.4) and via manual inspection we found that the WPN
messages in this cluster display fake PayPal alerts that lead users to
survey scam pages; therefore, we manually label the entire WPN-C2
cluster as malicious. This example demonstrates the gaps left by
current URL blocklisting services, and how ineffective they could be
if they were used to detect and block malicious ad notifications. Be-
low we discuss how we use the meta-clustering approach explained
in Section 5.4 to automatically identify and label more of such cases.

As described in Section 5.3, we apply a meta-clustering method
to group WPN clusters that may relate to each other, as they share
common landing page domains. To this end, we create a bipartite
graph G= (W ,D,E), hereW is the set of all 8,780 WPN clusters we
previously obtained, and D is the set of all 2,177 distinct landing
page domains pointed to by WPN ads that we were able to record.
By identifying and separating the connected components in this
bipartite graph, we identify 2,046 WPN meta clusters. Of these, 224
contain a mix of WPN clusters that we previously labeled as ad
campaign and other non-campaign WPN clusters. We then label all
WPN messages contained in these 224 ad-related meta-cluster as
WPN ads, thus increasing the number of WPN ads identified so far
from 3,213 to 5,143.

Figure 5 provides two examples of meta clusters. Figure 5a con-
tains as a node cluster WPN-C1 from Figure 4, as well as other 6
related WPN ad campaigns that are likely orchestrated by the same
operators. This meta-cluster contains many known malicious WPN
ad campaigns and WPN clusters, and therefore, we label all the
WPN clusters in the meta cluster as suspicious. By manual inspec-
tion, we verified that all domains involved in this meta cluster host
visually similar malicious pages (e.g., online survey scam pages).

Figure 5b shows another example of meta-cluster, which includes
cluster WPN-C2 from Figure 4 as a node, along with 30 other related
WPN ad clusters. In this meta-cluster, none of the WPN clusters
(i.e., the nodes) were initially labeled as malicious by either VT or
GSB. However, we manually inspected all landing pages pointed
to by WPN messages including in the meta cluster, and we were
able to confirm that these are indeed malicious, in that they display
fake PayPal messages and alerts that lead users to survey scams
and likely phishing-related pages.

Next, we consider all yet to be labeled WPN messages in a WPN
meta cluster as suspicious if the meta cluster contains at least one
malicious WPN cluster or if it contains duplicate ad domains, as
defined in Section 5.4. Out of the 572 WPN ad campaigns identified
earlier, we found that 255 of them contained duplicate ad domains.
Accordingly, we were able to label a total of 287 out of 2,046 WPN
meta clusters as suspicious. Further, we identified 166 (out of 572)
additional WPN ad campaigns, which were not previously labeled
malicious in the previous step, as suspicious. Overall, this translates
into 1,479 suspicious WPN ads, as shown in Table 4. Following our
manual verification process, we confirmed 1,280 (86.5%) of these ads

as malicious. The remaining 199 WPN ads were flagged by PushAd-
Miner because they were related to duplicate ad domains. Of these,
166 were alerts related to job postings and led to similar pages on
multiple domains listing the same job; 23 led to multiple sites that
hosted content related to the horoscope; 4 led to adult websites;
and 6 were subscription welcome/thank you notifications. Notice
that while these 199 WPN messages may be benign, PushAdMiner
helped us identify and characterize a large number of additional
WPN ads that are in fact malicious and were not identified by URL
blocklists such as VT or GSB. However, our current system is not
designed to be an automatic malicious WPN ad detection system.
In our future work, we plan to leverage the lessons learned from
the measurement results obtained in this paper to investigate how
malicious WPN messages can be accurately detected and blocked
in real time.

Singleton Clusters: Our tight first-stage clustering yielded 7,731
singleton clusters. Of these, 6,876 were found to share landing do-
mains with WPNs in non-singleton clusters. After meta clustering,
we were then left with 855 singleton clusters. By manually inspect-
ing a sample of 200 singleton clusters, we found them to be a mix
of simple alerts and spurious suspicious ads. Table 5 shows a few
example of the text and domains related to the analyzed singleton
clusters.

Table 5: Examples of Singleton Clusters

Title Body Domains
(S)-Source (L)-Landing

TechNewsGadget 189 Fortnite Wants To Add Bot
Players

technewsgadget.net (S)(L)

CongratsWalmart User!! (1) RewardWaiting! healthydreamstoday.com (S)
besthealthlife.com (L)

The Mattest Blackest Liner
EVER !!

Our new obsession! hudabeauty.com (S)(L)

Coca Cola is looking for
YOU ??

No experience required Training
Provided!

eblog.network (S)(L)

Hire Local Service Profes-
sionals For All Your Needs

vconnect.com is your one stop
destination for local services.

m.vconnect.com (S)(L)

FOX NEWS Lose 45lbs In 4 Weeks! No
Exercise!

nodilax.com (S) women-
lifestyledaily.com (L)

Additional recent measurements: To measure the prevalence of
WPN ads at a later point in time, compared to our initial measure-
ments, we collected an additional and more recent batch of data for
5 days between April 4th, 2020 and April 9th, 2020. We revisited 300
websites randomly chosen from our previous datasets, 35 of which
sent us 305 notifications over 5 days. Of these 305 notifications,
PushAdMiner labeled 198 WPN ads and flagged 48 of them as ma-
licious, which we also verified via manual analysis. After checking
the corresponding landing page URLs on VirusTotal, only 15 of
them were flagged as malicious, confirming again that WPN-based
threats often remain undetected by current defenses.

6.4 Push AdNetworks and Blocking
Figure 6 shows the distribution of WPN ads, including malicious
ones, per ad network. As it can be seen, many of the ad networks we
considered in our measurements are abused to distribute malicious
WPN ads.

We also investigated whether ad blocker extensions used by desk-
top browsers may be effective against WPN ads. For instance, we

734

IMC ’20, October 27–29, 2020, Virtual Event, USA K. Subramani, X. Yuan, O. Setayeshfar, P. Vadrevu, K. Lee and R. Perdisci

(a) Meta Cluster ofWPN-C1WPNAC (b) Meta Cluster ofWPN-C2WPNAC

WPN Ad
Campaigns

Unlabeled
Clusters

Landing
Domains

Malicious
Clusters

Malicious
WPN Ad
Campaigns

Figure 5: Graphical Representation Examples ofMeta Clusters

OneSignal

Ad-Maven

iZooto
PushCrew

PushEngage

PopAds
Criteo

HillTopAds

PropellerAds

PubMatic

PushMonetization

Other

2

5
10

2

5
100

2

5
1000

2

5

WPNs
Malicious WPNs

Ad Networks

C
ou

nt
 (

 in
 lo

g
sc

al
e)

Figure 6: Distribution ofWPNsw.r.t. Ad Networks

checked the URLs of SW scripts against the Easylist filter rules[6]
used by most popular ad blockers. Furthermore, we installed two
highly popular ad blocker extensions in our Chromium browser
and checked its blocking capability. As shown in Table 6, both ad
blocking mechanisms couldn’t block the requests issued by the
installed SW that were related to WPN ads, even though Easylist
was able to filter a small number (less than 2%) of such network
requests. This shows that existing methods were not sufficient to
mitigate WPN-based ads, including malicious ones.

While working on this study, a new feature was introduced
in Chrome [10] in February, 2020 to prevent the abuse of WPNs.
This feature focuses on blocking notification permission prompts
from websites that have a low notifications opt-in rate. To test the
effect of this feature on our dataset, we used the latest Chrome
version (Chrome 80) to revisit 300 randomly chosen websites that
had previously requested notifications. Since our Chromium code
instrumentations could not be easily ported to this latest version
of the browser, we performed detailed manual analysis. We found

that all of the websites we visited were still able to request noti-
fication permissions without getting blocked. It is possible that
this new Chrome feature will be able to block abusive WPNs in
the future, after more training data is collected. However, it is un-
clear whether and to what extent it will be effective in blocking
WPN-based malicious ads.

Table 6: Results on Existing Ad Blockers

No. of Blocked URLs
Service Worker
Scripts

Service Worker
Requests

Easylist Blocklist 0 out of 1187 132 out of 8031
AdBlockPlus 0 out of 884 0 out of 7276
AdGuard 0 out of 895 0 out of 7520

7 RELATEDWORK
In this section, we discuss prior studies related to our work.
Service Workers and WPNs: Papadopoulos et al. [48] propose
multiple attack techniques to register malicious SWs that can con-
trol a victim’s web browser (e.g., steal computation power for per-
forming nefarious activities). There exist other studies [47, 51] that
demonstrate similar attacks on Web Workers. Lee et al. [38] study
the risks posed by PWAs. For instance, they collect SW scripts from
top-ranked website homepages and analyze the risks for phishing
due to the use of brand logos in push notifications. They also found a
number of push-based phishing attacks that exploit WhatsApp and
YouTube icons. Furthermore, they also identify security flaws in the
design of browsers and third-party push notification libraries. Other
works related to Progressive Web Apps[25, 42, 43] focus on the per-
formance of PWAs in multiple environment and their energy usage.

Our study is different, because we focus on measuring the use of
WPN messages as an ad-delivery platform in general, and on mea-
susing abuse in WPN ads. To that end, we design and implement an

735

When Push Comes to Ads:
Measuring the Rise of (Malicious) Push Advertising IMC ’20, October 27–29, 2020, Virtual Event, USA

automated system to subscribe to, collect, interact with, and analyze
in-the-wild WPN messages on both desktop and mobile platforms.
Analyzing Online Ads: A line of studies [22, 24, 49] is dedicated
to investigate the online advertisement ecosystem. They trace the
information passed between ad exchanges and analyze the revenue
collected using ads. Another body of studies [26, 28, 34, 40, 41, 44, 50,
55, 56, 61] focus on identifying traditional malicious web advertise-
ments and ad campaigns in both desktop and mobile environments.
Similarly, a recent study [58] reports observations of social engineer-
ing attack campaigns delivered through traditional web-based ad-
vertisements. Our work is different, because we specifically focus on
ads and malicious ad campaigns delivered through WPN messages.

AdGraph [35] is an advanced machine learning-based system
that focuses on identifying online ads embedded in web pages. Ad-
Graph’s instrumented browser collects fine-grained details about
relationships between DOM nodes. A graph generated from those
details is fed into a Random Forest classifier to detect ADS vs. NON-
ADS elements. Upon testing the effects of AdGraph’s open-source
implementation on ads delivered via WPNs, we observed that their
system collects detailed information from a web page’s context but
does not appear to record or analyze information related to SWs and
WPNs. Our work is different, in that we focus specifically on col-
lecting WPN-based ads and measuring the prevalence of malicious
ads within them.
Online Scams andAdBlockers: A number of approaches [23, 30,
59] have been proposed to study the effectiveness of existing ad
block techniques as well as the various counter-measures used by ad
providers to circumvent ad blockers. Other studies [27, 37, 46] dis-
cuss various online scam techniques and the prevalence of Internet
fraud. Although PushAdMiner does not focus on blocking mali-
cious ads or online scams, we demonstrate that existing ad blocking
techniques are not effective at defending against malicious WPN
ads.

8 DISCUSSIONAND LIMITATIONS
Blocking Malicious WPN Ads: In Section 6.4, we showed that
existing popular ad blockers and filtering rules were not effective at
mitigatingWPN ads, due to the limited visibility that extensions had
on SW activities. This appears to have been due to Chromium bugs
that have since been fixed (or are in the process of being fixed) [7].
However, even though extensions may now be able to observe and
block SW requests, it is unclear if this will be sufficient to block
WPN ads or if other evasion mechanisms can be implemented by
push ad networks.

A browser extension called AdBlaster [2] specifically claims to
block WPN ads. However, AdBlaster simply disables all push notifi-
cations, including benign non-ad ones, which can obviously disrupt
legitimate uses of WPN messages. Although our PushAdMiner sys-
tem is not currently designed to detect malicious WPN ads in a
fully automated way, we believe that the results from our study
provide useful insights into the malicious use of WPN ads that may
encourage and help the security research community to build better
defenses against the abuse of web push notifications.
DoublePermissions: In this study, we observed some websites do
not directly ask for permission to send notifications to the browser.
Rather, they first create a dynamic JavaScript-based prompt that

mimics a browser permission request. Popularly referred to as dou-
ble permission, this mechanism is used by some websites to avoid
being permanently blocked from requesting notification permis-
sions in the future (which would happen if the user clicks on the
“Block” button), or to bypass other policy restrictions. We observed
double permission to gain popularity only recently, months after
our initial data collection. To check its effects on our dataset, we
ran an experiment on a random sample of 200 URLs that previously
requested permission directly. We found that only around 1/4th
(49 out of 200 URLs that we manually checked) switched to using
double permission. Furthermore, this does not impact our analysis
on the abuse of WPNs. For instance, PushAdMiner could be instru-
mented to bypass this mechanism by simply granting notification
permission to all visited sites, regardless of whether they request
it or not. Because double permission dialog boxes are typically pro-
grammed to appear only when the website doesn’t already have
notification permission, they could be avoided altogether.
Evading Crawling Detection : Websites may attempt to detect
browser automation to avoid being crawled. To mitigate this issue,
we built our crawlers using Puppeteer. Unlike other tools, Puppeteer
(developed by the Chromium team) leverages DevTools and is less
prone to fingerprinting. During our experiments we also observe
that a few ad networks use cookies or other information to track the
device or web browser across browsing sessions. To mitigate this
and increase our chances of being presented with fresh notification
permission requests from as many sources as possible, we created
a separate Docker container for each URL we visited.

9 CONCLUSION
In this paper, we have studied how web push notifications (WPNs)
are being used to deliver ads, and measured how many of these ads
are used formalicious purposes. To enabled this study, we developed
a system called PushAdMiner, which allowed us to automatically
collect and analyze 21,541 WPN messages across thousands of dif-
ferent websites. Among these, our system identified 572 WPN ad
campaigns, for a total of 5,143 WPN-based ads, of which 51% are
malicious. We also found that traditional ad-blockers and malicious
URL filters are remarkably ineffective againstWPN-based malicious
ads, leaving a significant abuse vector unchecked.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their con-
structive comments and suggestions on how to improve this paper,
and Prof. Paul Barford for serving as our shepherd. This material is
based in part upon work supported by the National Science Foun-
dation (NSF) under grants No. 1916500 and 1909856. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the NSF.

REFERENCES
[1] 2020. Ad Block Plus. https://adblockplus.org. (Last accessed Sep.17, 2020).
[2] 2020. AdBlaster Adblocker. https://www.adblaster.org/.
[3] 2020. Bing Ad Content Policies. https://about.ads.microsoft.com/en-

us/resources/policies/ad-content-policies. (Last accessed Sep.17, 2020).
[4] 2020. Brave Ad Block. https://brave.com. (Last accessed Sep.17, 2020).
[5] 2020. Cost per mille. https://en.wikipedia.org/wiki/Cost_per_mille. (Last

accessed Sep.17, 2020).

736

https://adblockplus.org
https://www.adblaster.org/
https://about.ads.microsoft.com/en-us/resources/policies/ad-content-policies
https://about.ads.microsoft.com/en-us/resources/policies/ad-content-policies
https://brave.com
https://en.wikipedia.org/wiki/Cost_per_mille

IMC ’20, October 27–29, 2020, Virtual Event, USA K. Subramani, X. Yuan, O. Setayeshfar, P. Vadrevu, K. Lee and R. Perdisci

[6] 2020. Easylist. https://easylist.to/. (Last accessed Sep.17, 2020).
[7] 2020. Extensions visibility into Service Worker. https://groups.google.com/a/

chromium.org/g/chromium-extensions/c/K-XAwApkyN0/m/gX9cA4ZCAgAJ?
pli=1. (Last accessed Sep.17, 2020).

[8] 2020. Gensim Word2Vec Model. https://radimrehurek.com/gensim/models/
word2vec.html.

[9] 2020. Google Ads Policies. https://support.google.com/adspolicy/answer/
6020954?hl=en. (Last accessed Sep.17, 2020).

[10] 2020. Google Quiet UI for Notifications. https://blog.chromium.org/2020/01/
introducing-quieter-permission-ui-for.html. (Last accessed Sep.17, 2020).

[11] 2020. Google Safe Browsing : Blocklisting Platform. https://safebrowsing.google.
com/.

[12] 2020. Introduction to Push Notifications. https://developers.google.com/web/
ilt/pwa/introduction-to-push-notifications. (Last accessed Sep.17, 2020).

[13] 2020. Introduction to Service Worker. https://developers.google.com/web/ilt/
pwa/introduction-to-service-worker. (Last accessed Sep.17, 2020).

[14] 2020. Notifications API. https://developer.mozilla.org/en-US/docs/Web/API/
Notifications_API. (Last accessed Sep.17, 2020).

[15] 2020. PublicWWWUsage Examples. https://publicwww.com/examples/ads.html.
(Last accessed Sep.17, 2020).

[16] 2020. Push API. https://developer.mozilla.org/en-US/docs/Web/API/Push_API.
(Last accessed Sep.17, 2020).

[17] 2020. Richpush Ad Network. https://richpush.co. (Last accessed Sep.17, 2020).
[18] 2020. The State of Push Notification Advertising. https://www.izooto.com/hubfs/

TheStateofPushNotificationAds-iZootoreport.pdf. (Last accessed Sep.17, 2020).
[19] 2020. Using Application Cache. https://developer.mozilla.org/en-

US/docs/Web/HTML/Using_the_application_cache. (Last accessed Sep.17, 2020).
[20] 2020. Using Service Workers. https://developer.mozilla.org/en-US/docs/Web/

API/Service_Worker_API/Using_Service_Workers. (Last accessed Sep.17, 2020).
[21] 2020. Virus Total: Blocklisting Platform. https://www.virustotal.com/.
[22] Paul Barford, Igor Canadi, Darja Krushevskaja, Qiang Ma, and ShanMuthukrish-

nan. 2014. Adscape: Harvesting and analyzing online display ads. In Proceedings
of the 23rd international conference onWorld wide web. ACM, 597–608.

[23] Muhammad Ahmad Bashir, Sajjad Arshad, Engin Kirda, William Robertson, and
ChristoWilson. 2018. How tracking companies circumvented ad blockers using
websockets. In Proceedings of the Internet Measurement Conference 2018. ACM,
471–477.

[24] Muhammad Ahmad Bashir, Sajjad Arshad, William Robertson, and Christo
Wilson. 2016. Tracing information flows between ad exchanges using retargeted
ads. In 25th {USENIX} Security Symposium ({USENIX} Security 16). 481–496.

[25] Andreas BiÃÿrn-Hansen, Tim A. Majchrzak, and Tor-Morten GrÃÿnli. 2017.
ProgressiveWeb Apps: The Possible Web-native Unifier for Mobile Development.
344–351. https://doi.org/10.5220/0006353703440351

[26] Gong Chen, Wei Meng, and John Copeland. 2019. Revisiting Mobile Advertising
Threats with MAdLife. In TheWorldWideWeb Conference. ACM, 207–217.

[27] JasonW. Clark and DamonMcCoy. 2013. There Are No Free iPads: An Analysis
of Survey Scams as a Business. In Presented as part of the 6th USENIXWorkshop
on Large-Scale Exploits and Emergent Threats. USENIX,Washington, D.C. https:
//www.usenix.org/conference/leet13/workshop-program/presentation/Clark

[28] Jonathan Crussell, Ryan Stevens, and Hao Chen. 2014. Madfraud: Investigating
ad fraud in android applications. In Proceedings of the 12th annual international
conference on Mobile systems, applications, and services. ACM, 123–134.

[29] Docker. 2019. Docker: Enterprise Container Platform. https://www.docker.com/.
(Last accessed Nov.1, 2019).

[30] Kiran Garimella, Orestis Kostakis, and Michael Mathioudakis. 2017. Ad-blocking:
A Study on Performance, Privacy and Counter-measures. In Proceedings of the
2017 ACM onWeb Science Conference (Troy, NewYork, USA) (WebSci ’17). 259–262.

[31] Gensim. 2019. Documentation on Similarity Computation in Gensim Library.
https://radimrehurek.com/gensim/similarities/docsim.html (Last accessed
Nov.11, 2019).

[32] Google. 2019. Puppeteer: Chormium Browser Automation Tool.
http://liwc.wpengine.com/compare-dictionaries/. (Last accessed Nov.11, 2019).

[33] Google. 2019. Set up a JavaScript Firebase Cloud Messaging client app. https:
//firebase.google.com/docs/cloud-messaging/js/client. (Last accessedNov.1, 2019).

[34] Chin-Tser Huang, Muhammad Nazmus Sakib, Charles Kamhoua, Kevin A Kwiat,
andLaurentNjilla. 2018. ABayesianGameTheoreticApproach for InspectingWeb-
basedMalvertising. IEEETransactions onDependable and Secure Computing (2018).

[35] Umar Iqbal, Peter Snyder, Shitong Zhu, Benjamin Livshits, Zhiyun Qian, and
Zubair Shafiq. 2020. Adgraph: A graph-based approach to ad and tracker blocking.
In Proc. of IEEE Symposium on Security and Privacy.

[36] Jordan Jueckstock and Alexandros Kapravelos. 2019. VisibleV8: In-browser
Monitoring of JavaScript in theWild. In Proceedings of the Internet Measurement
Conference (Amsterdam, Netherlands) (IMC ’19). 393–405.

[37] Amin Kharraz, William K. Robertson, and Engin Kirda. 2018. Surveylance: Auto-
matically Detecting Online Survey Scams. In 2018 IEEE Symposium on Security and
Privacy, SP 2018, Proceedings, 21-23May 2018, San Francisco, California, USA. 70–86.

[38] Jiyeon Lee, Hayeon Kim, Junghwan Park, Insik Shin, and Sooel Son. 2018. Pride
and Prejudice in ProgressiveWeb Apps: Abusing Native App-like Features inWeb
Applications. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 1731–1746.

[39] Bo Li, Phani Vadrevu, Kyu Hyung Lee, and Roberto Perdisci. 2018. JSgraph:
Enabling Reconstruction ofWeb Attacks via Efficient Tracking of Live In-Browser
JavaScript Executions. In 25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018.

[40] Zhou Li, Kehuan Zhang, Yinglian Xie, Fang Yu, and XiaoFeng Wang. 2012.
Knowing your enemy: understanding and detecting malicious web advertising. In
Proceedings of the 2012 ACM conference on Computer and communications security.
ACM, 674–686.

[41] Bin Liu, Suman Nath, Ramesh Govindan, and Jie Liu. 2014. {DECAF}: Detecting
and Characterizing Ad Fraud in Mobile Apps. In 11th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 14). 57–70.

[42] Tim A. Majchrzak, Andreas Biørn-Hansen, and Tor-Morten Grønli. 2018. Progres-
siveWebApps: the Definite Approach to Cross-PlatformDevelopment?. InHICSS.

[43] Ivano Malavolta, Giuseppe Procaccianti, Paul Noorland, and Petar Vukmirovic.
2017. Assessing the Impact of Service Workers on the Energy Efficiency of
Progressive Web Apps. In Proceedings of the International Conference on Mobile
Software Engineering and Systems, MOBILESoft ’17, Buenos Aires, Argentina, May,
2017. to appear.

[44] Rima Masri and Monther Aldwairi. 2017. Automated malicious advertisement
detection using VirusTotal, URLVoid, and TrendMicro. In 2017 8th International
Conference on Information and Communication Systems (ICICS). IEEE, 336–341.

[45] Joseph Medley. 2019. Web Push Notifications: Timely, Relevant, and Precise.
https://developers.google.com/web/fundamentals/push-notifications. (Last
accessed Nov.1, 2019).

[46] NajmehMiramirkhani, Oleksii Starov, and Nick Nikiforakis. 2017. Dial One for
Scam: A Large-Scale Analysis of Technical Support Scams. In 24th Annual Network
and Distributed System Security Symposium, NDSS 2017, San Diego, California,
USA, February 26 - March 1, 2017.

[47] Yao Pan, Jules White, and Yu Sun. 2016. Assessing the threat of web worker
distributed attacks. In 2016 IEEE Conference on Communications and Network
Security (CNS). IEEE, 306–314.

[48] Panagiotis Papadopoulos, Panagiotis Ilia, Michalis Polychronakis, Evangelos P.
Markatos, Sotiris Ioannidis, and Giorgos Vasiliadis. 2019. Master of Web Puppets:
AbusingWeb Browsers for Persistent and Stealthy Computation. In 26th Annual
Network and Distributed System Security Symposium, NDSS 2019, San Diego,
California, USA, February 24-27, 2019.

[49] M. Zubair Rafique, Tom van Goethem,Wouter Joosen, Christophe Huygens, and
Nick Nikiforakis. 2016. It’s Free for a Reason: Exploring the Ecosystem of Free
Live Streaming Services. In 23rd Annual Network and Distributed System Security
Symposium, NDSS 2016, San Diego, California, USA, February 21-24, 2016.

[50] Vaibhav Rastogi, Rui Shao, Yan Chen, Xiang Pan, Shihong Zou, and Ryan Riley.
2016. Are these Ads Safe: Detecting Hidden Attacks through the Mobile App-Web
Interfaces.. In NDSS.

[51] Michael Rushanan, David Russell, and Aviel D Rubin. 2016. Malloryworker:
stealthy computation and covert channels using web workers. In International
Workshop on Security and Trust Management. Springer, 196–211.

[52] Scikit-Learn. 2019. Documentation on Silhoutte Score metric to compute distance
between clusters. https://scikit-learn.org/stable/modules/generated/sklearn.
metrics.silhouette_score.html (Last accessed Nov.11, 2019).

[53] Selenium. 2019. Selenium: Web Browser Automation Tool. https:
//www.seleniumhq.org/. (Last accessed Nov.11, 2019).

[54] Grigori Sidorov, Alexander Gelbukh, Helena Gómez-Adorno, and David Pinto.
2014. Soft similarity and soft cosine measure: Similarity of features in vector
space model. Computación y Sistemas 18, 3 (2014), 491–504.

[55] Aditya K Sood and Richard J Enbody. 2011. Malvertising–exploiting web
advertising. Computer Fraud & Security 2011, 4 (2011), 11–16.

[56] Oleksii Starov, Yuchen Zhou, Xiao Zhang, Najmeh Miramirkhani, and Nick
Nikiforakis. 2018. Betrayed by your dashboard: Discovering malicious campaigns
via web analytics. In Proceedings of the 2018 World Wide Web Conference.
International WorldWideWeb Conferences Steering Committee, 227–236.

[57] LBE Tech. 2019. Parallel Space - Multiple accounts and Two face.
http://parallel-app.com/. (Last accessed Nov.1, 2019).

[58] Phani Vadrevu and Roberto Perdisci. 2019. What You See is NOTWhat You Get:
Discovering and Tracking Social Engineering Attack Campaigns. In Proceedings
of the Internet Measurement Conference. ACM, 308–321.

[59] Antoine Vastel, Peter Snyder, and Benjamin Livshits. 2018. Who Filters the
Filters: Understanding the Growth, Usefulness and Efficiency of Crowdsourced
Ad Blocking. CoRR abs/1810.09160 (2018).

[60] Wikipedia. 2019. What is Banner Blindness? https://en.wikipedia.org/wiki/
Banner_blindness. (Last accessed Nov.11, 2019).

[61] Apostolis Zarras, Alexandros Kapravelos, Gianluca Stringhini, Thorsten Holz,
Christopher Kruegel, and Giovanni Vigna. 2014. The dark alleys of madison
avenue: Understanding malicious advertisements. In Proceedings of the 2014
Conference on Internet Measurement Conference. ACM, 373–380.

737

https://easylist.to/
https://groups.google.com/a/chromium.org/g/chromium-extensions/c/K-XAwApkyN0/m/gX9cA4ZCAgAJ?pli=1
https://groups.google.com/a/chromium.org/g/chromium-extensions/c/K-XAwApkyN0/m/gX9cA4ZCAgAJ?pli=1
https://groups.google.com/a/chromium.org/g/chromium-extensions/c/K-XAwApkyN0/m/gX9cA4ZCAgAJ?pli=1
https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html
https://support.google.com/adspolicy/answer/6020954?hl=en
https://support.google.com/adspolicy/answer/6020954?hl=en
https://blog.chromium.org/2020/01/introducing-quieter-permission-ui-for.html
https://blog.chromium.org/2020/01/introducing-quieter-permission-ui-for.html
https://safebrowsing.google.com/
https://safebrowsing.google.com/
https://developers.google.com/web/ilt/pwa/introduction-to-push-notifications
https://developers.google.com/web/ilt/pwa/introduction-to-push-notifications
https://developers.google.com/web/ilt/pwa/introduction-to-service-worker
https://developers.google.com/web/ilt/pwa/introduction-to-service-worker
https://developer.mozilla.org/en-US/docs/Web/API/Notifications_API
https://developer.mozilla.org/en-US/docs/Web/API/Notifications_API
https://publicwww.com/examples/ads.html
https://developer.mozilla.org/en-US/docs/Web/API/Push_API
https://richpush.co
https://www.izooto.com/hubfs/The State of Push Notification Ads - iZooto report.pdf
https://www.izooto.com/hubfs/The State of Push Notification Ads - iZooto report.pdf
https://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache
https://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API/Using_Service_Workers
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API/Using_Service_Workers
https://www.virustotal.com/
https://doi.org/10.5220/0006353703440351
https://www.usenix.org/conference/leet13/workshop-program/presentation/Clark
https://www.usenix.org/conference/leet13/workshop-program/presentation/Clark
https://www.docker.com/
https://radimrehurek.com/gensim/similarities/docsim.html
http://liwc.wpengine.com/compare-dictionaries/
https://firebase.google.com/docs/cloud-messaging/js/client
https://firebase.google.com/docs/cloud-messaging/js/client
https://developers.google.com/web/fundamentals/push-notifications
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://www.seleniumhq.org/
https://www.seleniumhq.org/
http://parallel-app.com/
https://en.wikipedia.org/wiki/Banner_blindness
https://en.wikipedia.org/wiki/Banner_blindness

	Abstract
	1 Introduction
	2 Motivating Example and Background
	2.1 Motivating Example
	2.2 Technical Background

	3 System Overview
	4 Data Collection Module
	4.1 Desktop Environment
	4.2 Mobile Environment

	5 Data Analysis Module
	5.1 WPN-based Ad Campaigns
	5.2 Identifying Malicious WPN Clusters
	5.3 WPN Meta Clustering
	5.4 Identifying Suspicious WPN Clusters

	6 Measuring WPN Ads in the Wild
	6.1 Data Collection Setup
	6.2 WPN Messages Dataset
	6.3 Data Analysis Results
	6.4 Push Ad Networks and Blocking

	7 Related Work
	8 Discussion and Limitations
	9 Conclusion
	References

